Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?

نویسندگان

  • Weiduo Zhu
  • Wen-Hui Zhao
  • Lu Wang
  • Di Yin
  • Min Jia
  • Jinlong Yang
  • Xiao Cheng Zeng
  • Lan-Feng Yuan
چکیده

The plethora of ice structures observed both in bulk and under nanoscale confinement reflects the extraordinary ability of water molecules to form diverse forms of hydrogen bonding networks. An ideal hydrogen bonding network of water should satisfy three requirements: (1) four hydrogen bonds connected with every water molecule, (2) nearly linear hydrogen bonds, and (3) tetrahedral configuration for the four hydrogen bonds around an O atom. However, under nanoscale confinement, some of the three requirements have to be unmet, and the selection of the specific requirement(s) leads to different types of hydrogen bonding structures. According to molecular dynamics (MD) simulations for water confined between two smooth hydrophobic walls, we obtain a phase diagram of three two-dimensional (2D) crystalline structures and a bilayer liquid. A new 2D bilayer ice is found and named the interlocked pentagonal bilayer ice (IPBI), because its side view comprises interlocked pentagonal channels. The basic motif in the top view of IPBI is a large hexagon composed of four small pentagons, resembling the top view of a previously reported "coffin" bilayer ice [Johnston, et al., J. Chem. Phys., 2010, 133, 154516]. First-principles optimizations suggest that both bilayer ices are stable. However, there are fundamental differences between the two bilayer structures due to the difference in the selection among the three requirements. The IPBI sacrifices the linearity of hydrogen bonds to retain locally tetrahedral configurations of the hydrogen bonds, whereas the coffin structure does the opposite. The tradeoff between the conditions of an ideal hydrogen bonding network can serve as a generic guidance to understand the rich phase behaviors of nanoconfined water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration structure of water confined between mica surfaces.

We report further molecular dynamics simulations on the structure of bound hydration layers under extreme confinement between mica surfaces. We find that the liquid phase of water is maintained down to 2 monolayer (ML) thick, whereas the structure of the K(+) ion hydration shell is close to the bulk structure even under D = 0.92 nm confinement. Unexpectedly, the density of confined water remain...

متن کامل

Classification of hydrogen bond flips in small water polyhedra applied to concerted proton tunneling.

Recently a new mechanism of proton tunneling in a prism-like water hexamer was revealed [Richardson et al., Science, 2016, 351, 1310]. The tunneling motion involves the concerted breaking of two hydrogen bonds and rotations of two nearest water molecules. Eventually, this structural transformation means flipping one of the hydrogen bonds without the creation of defects in the hydrogen bond netw...

متن کامل

Molecular and crystal structure of an amphiphile: 4'-propoxybiphenyl-4-methyl-N,N-dimethylamineoxide dihydrate.

A novel amphiphile, 4'-propoxybiphenyl-4-methyl-N,N-dimethylamineoxide, has been synthesized, crystallized (P2(1)/a, a = 9.084 A, b = 8.911 A, c = 22.460 A, beta = 96.224 degrees) and its crystal structure was determined. The amphiphile forms a bilayer in which the amineoxide oxygen of each molecule binds two water molecules. In the hydrophobic part of the bilayer the biphenyls form edge-to-fac...

متن کامل

Two-dimensional percolation at the free water surface and its relation with the surface tension anomaly of water.

The percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the poin...

متن کامل

Molecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water

The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 21  شماره 

صفحات  -

تاریخ انتشار 2016